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1 INTRODUCTION

One of the major advantages of optical systems is their ability to
process a great deal of information in parallel. The optical system

discussed here transmits a complete image, in parallel, through a single
fiber. It is a passive system. 'This transmission stjstem preserves

the three-d imensona[ and cofor informatton of the tmage.
The resolution of the image transmitted through the system is limited by
the number of modes that can propagate in the fiber. The image is

inserted and retrieved from the fiber by tapered input and output
sections connected to the ends of the fiber. as shown in Fig. 1. We here
present a theoretical analysis of how an image propagates through such a

system. We analyze the propagation through both the tapered input and
output sections as well as the light propagation through the fiber.

The large number of modes that can propagate through a large
diameter graded index fiber and the propagation of optical signals with
exceedingly low loss through modern fibers make this system possible.

The image is projected on the large face of a tapered graded index

section. The core diameter of the large face of the tapered graded index

section is, typically, 5 mm. The small end of the tapered section has the
same core diameter and index of refraction profile as the graded index
fiber to which it is attached. The tapered section is typically 20 cm's
long. Such a tapered section has a linear magnification of 50. A typical
graded index fiber in this application has a core diameter of about 100
am's. The system is designed in such a way that the light intensity is

about 60.6216 dB less at the edge of the graded index core than at the
point where the maximum electric field occurs. As we shall see, the

electro-magnetic field modes that carry the image information
propagate with different velocities. However, periodically along the
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Fig. 1. Single fiber parallel image transmission system.
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graded index structure the modes are in phase. At these points the image

is in focus. Since the distance between points where the image is in

focus depends only on the fractional change of the index of refraction
(An/n ) along the radius and some geometric factor there should be little

1
chromatic aberration in this system'. By placing the photo-detector at

such an image point one should be able to detect modulated light without

distortion.
A limitation of such a system is that it has a theoretical, numeric

aperture of only 0.0127416 and therefore a very limited acceptance

angle of about 0.5920. Thus, a concave lense has to be used to insert the
image as shown in Fig. 1. The distance the image can be transmitted

through the fiber and preserve the three-dimensional nature of the image
is limited by distortions and losses in a fiber.

The system has advantages over systems where the image is divided
into individual pixels and transmitted over a bundle of many fibers. In a
fiber bundle image transmission system the resolution is limited by the

2iumber of fibers in the bundle . The maintenance of the alignment of the
fibers over the length of such a bundle system, is of course very critical.
The fiber bundle system does not preserve the three-dimensional nature

of the image. However, it does preserve the color information. The
resolution in a single fiber system is mainly limited by the number of
modes that can propagate in the fiber. It is also limited by the size of

the aperture of the input and output sections.

H. Kita and T. Uchida3 demonstrated that an image can be transmitted

through curved graded index rods. They also discuss focusing of images

by graded index rods and the transmission of an image through fiber

bundles.
The light emanating from the image transmission system can be used
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directly in an optical information processing system to extract
information from the image. For example, the optical information
processing system attached to the output of the image transmission

system can be used to recognize certain patterns in the image.
The image transmitted through the fiber does not necessarily have to

be a picture of a real physical object. It could consist of various bits of
information that are transmitted through the fiber in parallel.

The most common methods for transmitting information through a
fiber are; direct modulation of the light intensity by an electrical signal,
pulse position modulation, and wavelength multiplexing. We here propose
a spatial position multiplexing information transmission system.

It is possible to build a repeater for the single fiber image
transmission system using a Micro-Channel Plate photomultiplier light
amplifier. However, the use of such a light amplifier will cause the loss
of the three-dimensional part of the image information.

It should, theoretically, be possible (in the future) to amplify the
image using a Nd doped fiber light amplifier. Such light amplifiers exist.
They are pumped by costreaming short wave length light. However, at
present, there are few lasers available that would conveniently produce

the correct short wave length light. If this image light amplification is
possible the image can be distributed over a number of fibers. One would
than have a true 3-D TV system where the image is distributed

through fibers.
The image arrives as an electro-magnetic field pattern at the large

face of the tapered input section. The electro-magnetic field pattern can

be thought of as being composed of the electric and magnetic field modes
of the graded index system. These electric and magnetic field modes then
propagate through the system. We shall, analyze the modes and their
propagation properties in the below.

Gilbert H. Owyang in his book entitled "Foundations of Optical Wave
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Guides" 4 gives a fairly extensive description of the modes and dispersion
relation of a graded index structure. Ditrich Marcuse gives a less
detailed description of the modes and dispersion relation in graded index

structures in his book entitled "Light Transmission Optics"5 However, the
discussion of the modes and dispersion relations in these books are
oriented towards optical communication by the use of a few modes and
the descriptions are not quite sufficient for the analysis of image
transmission. Greg Keiser in his book entitled "Optical Fiber

Communications" 6 , Y. Suematsu and Ken-Ichi Iga in their book entitled

"Introduction to Optical Fiber Communication" 7 and M. D. Freit and J. A.
Fleck in their paper entitled "Light Propagation in Graded-Index Optical

Fibers" 8 give a brief theory of electro-magnetic field modes propagating9

in graded index rods. N. Amitay and H. M. Presby use a numerical method
based on a model of successive lenses for a graded index sections and the
two-dimensional Fourier transform of the electric field pattern to
analyze the propagation of the fundamental mode in straight and tapered

graded index sections. N. Amitay and H. M. Presby also analyze the
propagation of the fundamental mode in tapered and straight step index
structures. These descriptions are somewhat simplified. They do not
consider the exact nature of the wave equation for the electric field that
has a direction perpendicular to the propagation direction. Nor do they
consider the exact nature of the angular dependence of the modes in
graded index systems. The spatial part of the wave equation as derived
from Maxwell's equations contains more terms than are listed in these
publications and, therefore, a more complete description of the modes of
the electric and magnetic fields is required to describe the propagation
of an image.
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2 WAVE PROPAGATION

2a The Wave Equation

We will assume that the electric or magnetic fields have decayed to a
negligible values at the core cladding interface. Therefore, we will
neglect the effect of the core-cladding boundary on the modes of the
electric and magnetic fields. The electric and magnetic field pattern of
the light wave propagating in the graded index structure can be
determined from the solution of the wave equation of the electric and
magnetic fields. The wave equations can be derived from Maxwell's
equations. Maxwell's equations have the following form in a medium with
no electrical charge or current.

VxE + a = 0 (2-1)
at

aEVxB = [p.oEoe(r,z)] -!.- (-2)

V.B= 0 (2-3)

V.D = 0 or V.[eoe(r,z)E] = 0 (2-4)

where E is the electric field vector, B is the magnetic flux density
vector go is the permeability of free space, F-0 is the dielectric constant
of free space, and e(r,z) is the spatially varying relative dielectric
function of the material. We assume that the relative dielectric function
varies both radially and along the optical axis of the graded index
structures discussed here. The optical axis coincides with the z-axis of
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the coordinate system used here. We shall assume that the relative

dielectric function is a very gradually varying function of the

coordinates. In this case equation 2-4 can be rewritten as follows:

EoE(r,z)V.E - 0 (2-5)

We shall, first, investigate modes in which the electric field is

transverse to the direction of propagation of the wave, the TE modes. In

order to derive the wave equation for these modes we take the curl of

equation 2-1 and the time derivative of equation 2-2:

VxVxE + -VxB = 0 (2-6)
at

-LVxB = [l.Lore(r,z)]' 2 E  (2-7)
a t at2

By substituting a(vxB)/at from equation 2-7 into equation 2-6 and

making use of equation 2-5 and a vector identity for the double curl

operator (equation 2-9) we obtain the wave equation for the electric

field vector E of the light wave:

V2E = [g±o0 oE(r,z)]_a2 E  (2-8)
t2

where

V2E V(V.E) - VxVxE (2-9)



8

Let us assume that the wave propagates in the z direction and the
electric field vector E has components in the r and 0 directions only.
That is, the electric field is perpendicular to the direction of
propagation of the wave, see Fig. 2. These are the so called transverse
electric field vector or TE modes. Once the electric field vector has been
calculated the corresponding magnetic flux density vector B for these
modes can be determined from equation 2-1.

One can alternatively assume that the z direction propagating wave
has a magnetic flux density vector B with components in the r and 0
direction only. That is, the flux density vector is perpendicular to the
direction of propagation of the wave. These are the so called transverse
magnetic field or TM modes. Once the flux density vector has been
calculated the corresponding electric field vector E for these modes can
be determined from equation 2-2. One will obtain a wave equation for the
cumponents of the magnetic flux density vector of the TM modes that is
similar in form to the one for the electric field components of the TE
modes. In a real light wave both type of modes are usually present. With
these assumptions the equation 2-8 takes the following form in
cylindrical coordinates:

1 2 1Er a2 Er Er 2 °-e - (2Er

r~rk, 'r)+ = =[goeoc(r,z)]2L (2-10)
rr ar r2 D()2 az 2  r2  r2 ae at2

and

rE 1 a2Ee a2E9 Fe 2 aEr a22E,
+ .+ - _ - + --- = [goe 0(r,z)1- (2-11)

7r T a ae2  az 2  r2  r2 a@ at2

where E and E are the radial and angular components of the electricr e
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r

Fig. 2. The cylindrical coordinate system used here.

field vector respectively. The electric field components in equations 2-

10 and 2-11 must also satisfy equation 2-5:

[gOFe(r'z)] {L(rEr) + r"E 0 (2-12)

2b Solutions of the Wave Equation

We assume the following traveling wave solution for Er and Ee:

Ep = Ep(r)e i[c t - me - k(z)z] (2-13)

where the subscript p stands for either r or e, and o is the angular
frequency of the light wave. Here m is an integer since the solution for

the electric field at an angle of zero degrees and 2mir radians must be
identical. The wave vector k(z) is assumed to be a gradually varying
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function of z. We assume the following form of the relative dielectric

function for the cylindrically symmetric optical wave guide.

e-(r,z) = E(1-A 2 )(2-14)

where A is the peak relative dielectric constant difference between the

.center and the point where r-a(z), and a(z) is the radial taper function

which is gradually varying with z. Let us use the following normalized

coordinates:

.!!no 2 no k(z)c
pa r q , and q= - (2-15)

C C ono

1

where c= and no =

By substituting equations 2-13, 2-14 and 2-15 into the wave equations,

equations 2-10 and 2-11, we obtain:

___ as)'r m~L2+ p " 2im.
p ap - 1 + oA Z)) L2 e=q2,m(Z)C' (2-16)

and

(p2i 1 ( 1+ Ak~ b8,. -i2. q ILM(zr)= (2-17)
pap ap p2 P(z)) p2

P P PO
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where we assumed that the square of the normalized wave vector of the
2

Nm'th mode q N,m(Z) varies sufficiently gradually with z so that the
2

derivatives of q N,m(Z) can be neglected. One can determine the radial

dependence of the electric field components from equation 2-16 and 2-

17. We assume the following solution for the components of the electric

field:

p = lpNmPaexp -a )bNmnP 2n  (2-18)
N (-2a 2n=o

and

-e~p ESpNmexp(-2IP+ + pOL +

bNm+ (2+a)pa +... "a3 (2-19)

where, as before, the subscript p stands for either r and 8, and where a

will be calculated later. The solution C p(p) of the differential equations

as well as the derivatives of the solutions a.(p)/ap go to zero as p goes

to infinity. At the center of the graded index structure, at p equal to

zero, the derivatives of the solutions go to zero.

We multiply equations 2-16 by p2 and equation 2-17 by 2imp 2 . We,

next, solve the equation resulting from equation 2-16 for 2imE.. We

substitute the expression resulting from equation 2-16 for 2imE. into

the expression derived from equation 2-17. We, lastly, divide the
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resulting equation by p4 to obtain:

1, ( im 2 + 1 + -' +q2r(Z)' 2, 0

1 + =2 N C
PPO P

(2-20)

This requires that:

1 [m2+ 1 +_.,,lr q2m(Z)Sr- -g P 1p + A ro1 ' MzrN m Z) -

(2-21)

A similar equation can be derived for the angular component C6 of the

electric field. The electric field components also have to satisfy
equation 2-12. However, We shall postpone the discussion of this
requirement until later.

The solution for the Nm'th mode of the radial component of the
electric field can symbolically be written as VNm(P)- We substitute the

solution for the Nm'th mode of the electric field for Er into equation 2-

20 and multiplying the resulting equation by the solution of the Mm'th
mode Vmm(P)" We also substitute the solution for the Mm'th mode of the

electric field for . r  into equation 2-20 and multiplying the resulting

equation by the solution of the Nm'th mode '1'Nm(P)"

'1 a ( WN [(m ± 1)2  - + p2 2

ap ap 2 p(Z)J
2 2O

(2-22)
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1M [ (m)2 2P 1
)  =m(Z) VNM

(2-23)

We, next, subtract equation 2-23 from equation 2-22 and integrate the
result by parts.

-V 'M00 200

PVYM--PVN = [qNM(Z) - q4mIz)J PUPVNVM (2-24)L ap ap 10=

Since the derivatives of the solution for the electric field are equal to
zero at p equal to zero and both the derivatives and the solutions are

2
equal to zero at p equal to infinity and since q Nm (Z) in general is not

equal to q2 MM(z) the integral of the product of the solutions must be

equal to zero for mode numbers N not equal to M. That is, the modes of
the electric field are orthogonal. Indeed, we require a set of orthogonal
modes in which the incident electric field pattern representing the
image can be expanded. The above process is the Sturm-Louiville

problem
By substituting equation 2-17 into equation 2-20, canceling pa and

the Gaussian terms on both side of the equation we obtain:

n=N

nbnr{[(2n +a) 2-(m± 1)2 ]p2n-2 [4n + 2  - 1 2n+

( P2 - p,}2n+2 )bnmp (2-25)

n=O
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We, next, rewrite equation 2-25 in expanded form:

bNm[(2N +a) 2(m ± 1) 2 1P2N-2_[4N+2+a_ - 1 1 2N+

1 - A )2N+2 + 
2

4- - ,m-  +
P2 (z)O2N)

bN.M f[(2N -2+ )2 (m ± 1)2 1p2N4 [4N-2+ + a p2N-2+

H A 2N+----- Ip ,+ ... +

- po(Z) I

bn+,m{ [(2n + 2+)2 (M ± 1 )2]p2n [4n+6 +a- 1p2n+2+

(1 A )2n+21+

C4 P2(Z)on.+

-zb2-m ++I

A4 p()p2n 2 + ... +

[2 (m ± 1)2p-2 2 + a  2 2 b 2n2a. a 2 Z4  qNm(zp (,P) n

(2-26)

We collect terms of equal power of p where b is equal to one (b -1).
om om

By setting the coefficient of p2N+2 equal to zero we obtain:
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-- = 0 or -=- (2-27)
42 2a4  po0(z) a2 po2(z)

Note that in general the variance 02 is z dependent. For a conical graded
index section with a gradually decreasing po or a the variance a2 also
decreases. By setting the coefficient of p-2 equal to zero we obtain:

a 2_(m ±1)2 =0 or a=+(m±1) (2-28)

By setting the coefficient of p2N equal to zero we obtain the following
form of the normalized wave vector of the Nm'th mode:

2 z 24/E[2N + 1 ± (m ± 1)]
qN , (z) = 1 - - O(2-29)

In order for the wave to propagate through the fiber the normalized
wave vector q Nm (z) must be real. The normalized wave vector q Nm(z) will

be real if the second term in equation 2-29 is smaller than one. This
limits the sum (2N + 2 + m] of the number of radial and angular modes.
This limits the resolution of the image that can be transmitted through
the fiber. We used the plus sign for the angular mode number m and the
"1" following it since, as we shall see, modes with negative m and 01" do
not converge at p equal to zero and thus can not be used to describe the

electric field in the fiber.
By setting the coefficient of p2N equal to zero we obtain the

following recursion relation for the polynomial coefficients brim
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bn+lm = - bn m  (2-30)
po(n + 1)[(n + 1) ± (m ± 1A

2c Properties of the Radial Solution of the Wave
Equation

From the above we conclude that the radial part of the wave equation

has the following form:

-= pI m (_ ,b±M±1x n,r2 n  2-3 1)
ANm 2 l n=

where:

,7K ,r ' r
p, or r= -r, or P,= (2-32)

and the subscript p, as before, stands for either r or 0. Here AN, m is a

normalization constant which we shall calculate below. The radial

functions Ep(4) of equation 2-31 are orthogont .for different

radiat mode numbers N and the same vatue of the antu[afr
mode number m. With the help of the recursion relation of equation
2-30 and the fact that b is equal to one we can construct theorn
polynomial coefficients b . The coefficients of the polynomials have

nm
the following form:



17

bnm = (- 1)n  N!(m+ )! for m+ 1 > 0 (2-33)
(N - n)!n!(n + rn + 1)!

The first few associated Leguerre4 polynomials are listed below:

= ,m+1

Hj m = 4m+1[1 - 1 42]

1 2 + m

2 + m 6+5m+m 2

Ho-M = 41-m

Hi-m= 2lmI-

H i m = I -M 1 2 2 2 +2 4N- {-m1 - _m 6 - 5m + m2T

K+m = m-11

K,*M=rml 1 142]
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Kom = 4-M-1

K-m = 4-m-[1 + .2]

-M = -M-1 1 + L2 + 1)4

HO( 0) e 2

1.0

N=O

0.5 N-2 N-4

0
4 5 6

-0.5

Fig. 3. Plot of the three functions HOo(4), H0
2 (4), and H0

4(4) times

a Gaussian. The angular mode number m is equal to one and
m+1=0.

We here assumed that po does not vary along the optical axis. This is the
case for a cylindrical graded index section. We assume that m is a

positive integer. With this assumption note that H mN has a singularity
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at , equal to zero for m greater than one. Similarly, K+ N has a

singularity at t equal to zero for m less than one, and K mN has a

singularity at t equal to zero for all values of m. As stated before, the
functions H and K multiplied by a Gaussian are orthogonal for the same
value of m and different values of N.

2
HN()

75.0

37.5

I 2 4 5. N6

-37.5

Fig. 4. Plot of the three functions H8 0 (), H82(4), and H84( )

times a Gaussian. The angular mode number m is equal to 7 and
m+1 =8.

Only functions that are not singular at , equal to zero and have
derivatives that are equal to zero at 4 equal to zero describe modes of
the electric field in the graded index structures. The same thing holds
for the magnetic flux density of the TM modes. Some typical modal
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solutions are plotted in figures 3 and 4. The fundamental mode consisting

of a Gaussian only is shown in Fig. 3. In Fig. 4 we show the radial

dependence of modes with a larger angular mode number. Modes with

large angular mode numbers m are centered at a radial distance 4 =

4(m+l). The radial moding causes these modes to have oscillations

centered at 4 = 4/(m,-1), see Fig. 4. The N-0 modes with angular mode

number m has a width in 4 that is approximately equal to 42.

We, next, calculate the normalization constants for the radial

functions:

2 k=N _N, k+n (N) 2[(m + 1)9]2

ANm = 2 X( -1) 2 x

k=on=o [(N - n)!] 2k'n!(k + m +1 )!(n + m +1)!

00Jo e-Xxk+n+m+l dx (2-34)

where:

x--- 2 and -Ldx =4d4 (3-35)2

By integrating equation 2-34 we obtain for the normalization

coefficients for the radial functions:

k"Nn=N

A2 (m + 1)!-'"( 1 )k+n N N! (m + 1)!(k + n+ m+ 1)
2 Eyd k!(N - k)! n!(N - n)! (k + m + 1)!(n +m+ 1)

k=O k=O

(2-36)

By substituting equation 2-15 into 2-29 we obtain the following

dispersion relation:
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2- 2": 1 - 'K0[2N + 1 + (m ±1)1 (2-37)
X Nm ' n

where:

2 - (o- (2-38)
Xe- - c

and where X N,m is the wave length of the N,m'th mode. Two adjacent

modes that were in phase at one point along the fiber will again be in
phase at a distance z M(N,m) from that point. The phase shift between

the two adjacent modes, say the Nm'th and (N+1),m'th mode, will differ
by exactly 27E(1+M) radians after they have propagated a distance
z M(N,m). Since we are interested in transmitting the tmage over a

large distance the distance zM(N,m) will be of the order of, say, 100

m's and M will be a large integer. This can be expressed mathematically
by using equation 2-37 as follows:

X. /1 - ' f 0[2N + 1 +(m _ 1)1Xc ~ZM(N,m)

271 + M) + 2n 1- 4-A'O[2N + 3 ± (m ± 1)] zM(N,m) C2-39)

We note that each mode propagates with a different velocity.
However, after both the Nm'th and (N+1),m'th modes have traveled a
distance z (Nm) they will be in phase again. We note that 2na/LA is

much larger than X . Therefore, for sufficiently small mode numbers the0
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square roots in equation 2-39 can be expanded to first order to yield:

-M (1 + M)a (2-40)
ZM- T

We note that in this approximation at a large distance zM along the fiber

the two adjacent Modes N,m and (N+1),m will be in phase. We also note
that this large distance is independent of mode numbers N and m.
Therefore, in a transparent rod with a paraboticaiy graded

square of the index of refraction, a static image pro*ected on
the face of the rod will, alto, be in focus at a large distance
z of some hundreds of meters from the input face. We noteM

that the distance z is independent of the light wavelength. Also, theM

change in index of refraction 4,/Ja, on which zM depends, is much less

dependent upon the wavelength of the light propagating through the rod

then is n 2. The shortest distance z at which a static image projected0!
at the face of the rod will be in focus is at M-0:

zo = (2-41)

We note that in this approximation the distance z that two adjacent
0

modes have to propagate in order for them be in phase again is
independent of the mode numbers N and m. Thus, at a distance z from0

the point where all the modes where in phase they will, approximately,
be in phase again. Therefore, in a transparent rod with a parabolically
graded square of the index of refraction a static image projected on the
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face of the rod will be in focus approximately at periodic intervals with

period z , see Fig. 5.0

Newport Corporation" lists the characteristics of some graded index

quarter pitch lenses (rods) in their GRIN-Rod Lens Starter Kit F-GRK1

instruction Manual. The quantity 4A listed in this literature corresponds

to the quantity 4A/I in this paper. The quarter pitch length, (1/4)P, in

the Newport literature corresponds to the quantity z /2 in our paper. Ino

table 1 we compare the measured value from the Newport literature

with the quantity z calculated from the quantity /A and equation 2-35.
0

Observe the good agreement between measured, (1/4) Pitch, and

calculated, z /2, values.
0

TABLE 1

4A (1/4)Pitch (a/IA) (z /2) = (1/4)Pitch
-1.

mm in mm's in mm's - mm's

Meas'd. Meas'd. Calc'd. Calc'd.

0.0964 16.3 1C.273 16.295

0.489 3.35 2.049 3.212

0.247 6.5 4.049 6.360

0.202 7.8 4.950 7.776

0.601 2.6 1.664 2.614

0.332 4.7 3.012 4.731

0.298 5.25 3.356 5.271

0.423 3.7 2.364 3.714

Table 1. Comparison of experimentally measured and
theoretically calculated quarter pitch length (z /2) in graded

index rods.
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The variance a 2(z) for the non-normalized coordinates as derived

from equations 2-15 and 2-27, has the following form:

a2 '(z) = Q(zA (2-42)

The Gaussian beamwaist w (z) (of the fundamental mode) quoted by N.p

Amitay and H. M. Presby 9 in equation 3 of their publication is equal to
two times the standard deviation a(z). The Gaussian beamwaist w (z) isp
also discussed in equation 7.3-21 of reference 5. We assume that, in

2general, both z (z) and a (z) are gradually varying functions of z.
By subtracting equation 2-21 from equation 2-16 we obtain:

ice = ,r (2-43)

Fig. 5. Light ray path in a parabolically graded index rod.
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This implies that the radial and angular electric field components are

900 out of phase. That is, the electric field vector rotates in a plane
perpendicular to the optical axis of the graded index rod.

2d Number of Propagating Modes In an Image

The resolution of the image is determined by the number of modes
available to transport the image. Since the fiber is the component with
the smallest diameter it will restrict the number of modes that
propagate through the system. The solutions to the wave equation that
we have used here assume that 'he electric or magnetic fields have
decayed to a negligible values at the core cladding interface. Therefore,
the core-cladding boundary will have only a negligible effect on the
modes. As we have seen only modes with m+1>0 can describe electric or
magnetic fields in the fiber. The maximum number of modes [2N + m +
2]rna x that can propagate in the fiber and come periodically to focus must

satisfy the approximation used for the derivation of equations 2-40 and
2-41.

[2N + m +2lmax (2-44)

where we made use of equations 2-15 and 2-38. The mode with the
largest angular mode m will have the largest radial extension of all

max

the modes used. Therefore, we substitute equation 2-42 for a//A into
equation 2-44 for the largest angular mode number m that still

max
satisfies the periodic focusing approximation.
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/202

mmax + 2 Y Q-45)
2

The electric field at a radius R , at the core cladding interface, of the

largest angular mode has the following from as derived from equation 2-

31:

i (R-)=exp - (2-46)

Here, as before, the subscript p stands for either r or 0. The peak value of
the electric field of this mode occurs at:

rmax = a-+M (2-47)

and

mr+1

ep,max =M +l 2 (2-48)

where e is the base of the natural logarithm. We require that the electric

field at the core cladding interface of the fiber be about 60 dB less than
at its maximum value:
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- 60 = 20log E'(R° (2-49)
ep,max

By combining equations 2-45, 2-46, 2-47, 2-48, and 2-49 we obtain:

-60 -20 4 O2 m + 1 log(e) + 1Olog(m + 1)log 2 )

10(m + 1)log[(m + 1)(m + 2)] (2-50)

The largest value m of the angular mode number consistent with the
max

assumption necessary to have periodic focusing of the image in the
graded index section can be calculated from equation 2-50.

11
The numeric aperture NA of a graded index lense is defined as

NA = n0R0'X (2-51)

The specifications and properties of a typical graded index image
transmission system operating with light having a wavelength of 520
nm's in vacuum are listed in table 2. In column 4 of table 2 we list the
properties of the Newport/NSG graded index rod-lens with the largest
quarter pitch length from table 1 for comparison. A 100 im diameter
fiber drawn from this lense would only permit a maximum number of
m =12 modes to be transmitted.

max
The linear magnification of the image in the fiber by the tapered

graded index section is equal to 50. This requires that the ratio of the
standard deviation in the large diameter graded index section to the
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TABLE 2

Parameter Fiber Large Dia. Newport/NSG
Section Grin Rod*

n 1.556 1.556 1.596
0

R 0 50 g~m's 2.5 mm's 1 mm

a/4A 122.120 gm's 305.299 mm's 10.273 mm's

a 2.54859 g.m's 127.429 gim's 23.0804 g~m's

z 0.383650 mm's 959.126 mm's 32.2736 mm's
0

m 285 285** 1653*
max

for N=0
m 95 95** 551*

max
for N-im
NA 0.637080 0.0127416 0.155359

PR*** -60.6216 dB -60.6216 dB -60.6434 dB

r 43.1006 p9m's 2.15503 mm's 0.938666 mm's
max

*See Table 1.

**Calculated from the requirement that the electric field of the largest

angular mode to be about 60 dB less at the core-cladding interface than
at its maximum value which occurs at r

max

***Here PR - 20log[(R )/E pmax]

Table 2. Typical specifications of a Single Graded Index Fiber

Image transmission System.

standard deviation in the fiber to be equal to 50. The "magnification
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a" quoted in equation 2 by N. Amitay and H. M. Presby9 as well as the

ratio of the quantities a/IA are equal to the square of the linear
magnification or to 2500. Here r is the radial distance from themax

center of the graded index section to where the peak of the N-0,
inm mode occurs, see equation 2-47.

max

2e Dynamic Properties Of Images.

We have above discussed the propagation properties of a static image

through the graded index system. We here consider the propagation

properties of a time varying image.
The group velocity V is given by:

d(o
V = d- (2-52)dk

The group velocity for each mode can readily be calculated from

equation 2-15 and 2-29. We obtain the following expression for the
group velocity:

V= c 1 (2-53)
no '_2

XN,m + 1

1 - XN,m

where:

XN,m - 4-X 0(2N + 1 ± (m 1)] (2-54)

One observes that the group velocity at constant wavelength depends on
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the sum of the angular and radial mode numbers m and N respectively. In

Fig. 6 we plot the percentage change of the group velocity for a constant
light wavelength of 520 nm's in vacuum for a fiber as a function of the

sum of the radial and angular mode numbers. We chose the same

parameters for the fiber as in section 2d.
We are interested in the difference At in the propagation times of the

fundamental mode, the mode with N-0, m+1-0, and the highest angular

mode, the mode with N=0, mmm in a fiber of length L:
max

L L
At = L (2-55)

V(N=0,m=mmax) - V(N=0,m=0)

1 0[ V(N,0,m=O) _ IV(N,m)

4.50X

2.25X

0-
50 100 150 200 250 300
Sum of mode numbers [2N +1 + (m t 1)1

Fig. 6. Plot of the ratio of the percentage change of the group
velocity as a function of the sum of the mode numbers in a

fiber with a 100 gtm core diameter. Here X0 - 334.1902 nm's.,

V(N-O,m-O)-1.926684 x0 8 m/sec., and n - 1.556.

0
For a 100 m long fiber with the specifications given in table 2,
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operating with light with a wavelength of 520 nm's in vacuum
At-21.1925 nsec. The image can be blinked on and off at a maximum
frequency, approximately, equal to the reciprocal of At or 47.1866 Mhz.

2f Tapered Graded Index Section
13

D. Marcuse calculated the effect of the taper in a graded index
section upon the modes propagating through such a structure. We,
however here simply assume that the taper is gradual enough so that
these effects can be neglected. We assume the following form for the

quantity a(z)/N/A(z).

1 + 1 + tanh (2-56)
7A~z WA 1 2 1 ( ZD

Wher: A(z) is the peak relative dielectric constant difference between
the center and the point where r-a(z), a(z) is the radial taper function
which is gradually varying with z, and ao/q&o is the value of a//A in
the fiber. Here B is equal to the "magnification a" quoted in equation 2

by N. Amitay and H. M. Presbyg, z is the distance along the optical axis of
the fiber and tapered section measured from the end of the large
diameter section, z is the distance from the end of the large diameter

section to the center of the taper, and z D is the "distance constant" of

the taper function. The large diameter section ends and the taper starts
at approximately z-zcT- (3z D). The fiber "pig tail" starts at

approximately z-z CT + (3zD). We calculate the points along the optical

axis where an image that is in focus at the face of the large diameter
sections is, again, in focus. We assume here that ZCT-150 mm's, zD-43
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mm's, and 8-2500. The results of this calculation using equations 2-40

and 2-56 are listed in table 3.

TABLE 3

M z mm'sM

1 181.349
2 196.7214
3 205.2936
4 211.2712
5 2158.687
6 219.6078
7 222.7608

8 225.4881

9 227.8921
10 230.0421

110 280.90525
111 281.11589

Table 3. The distance from the input face of the large diameter

section of a conical graded input section to points where the
image would be in focus again if it is in focus at the input face.

We observe from table 3 that the distance between consecutive

points where the image is in focus decreases drastically as the quantity

a/N/, decreases and as the taper approaches the dimensions of the fiber.
At a distance of 281.11589 mm's from the face of the large diameter

section the quantity a/4& has reached a value of 806.144 igm's. It is
interesting to note that one would predict a half pitch value z of
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2.53258 mm's for the above value of a/4/A. However, the difference
between z and z110 is only 0.21064 mm's. A similar result can be

11110

obtained by a ray tracing technique that uses the matrices of reference

9. The ray tracing data is not presented in this paper. Perhaps, this is
related to the light guide taper effect discussed in the August 1989

14
issue of Scientific Amereican . Recall from table 2 that in the fiber

a/4/A=122.120 gm's.

4 CONCLUSION

We built and tested a prototype graded index image transmission

model. The model consisted of a 0.5 mm diameter prototype fiber with

ends that tapered to 5 mm diameter input and output sections. The
structure was about 400 mm iong. We sucessfully transmited a standard
Air Force Target throuy., the system. There seem to be little loss in

resolution.

5 CONCLUSION

We 'lave developed a theoretical model that explains how an image

can be transmitted in parallel through a system consisting of a graded

index fiber with graded index conical sections attached at its ends. The

model is derived from the electro-magnetic field equations. It analyzes

how the various electric field modes propagate through the system. The

image arrives as an electric field pattern at the large face of the

tapered input section. The electric field pattern can be thought of as

being composed of the modes of the graded index system. These electric
field modes then propagate through the system.

The image is inserted into a 5 mm diameter cylindrical graded index
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section that tapers to a 100 jam diameter graded index fiber. This taper

provides a 50:1 linear demagnification. The numeric aperture of the

large diameter section is equal to 0.0127416. The resolution of the

system is limited by the small diameter fiber to only 285 radial and

angular modes. The electric field of the 285'th radial mode is 60.622 dB
less at the core cladding interface than at the point, r = 43.1006 gm's,

where the peak of the largest angular mode occurs. The Gaussian

associated with the electric and magnetic field modes in the fiber has a

standard deviation a = 2.54859 lam's. The propagation delay of the

different modes limits the maximum rate of change of the image to

approximately, 47.1866 MHz in a 100 m long fiber.
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FIGURE CAPTIONS:

Fig. 1. Single fiber parallel image transmission system.

Fig. 2. The cylindrical coordinate system used here.

Fig. 3. Plot of the three functions H o(4), H 2(4), and H°I4( ) times a

Gaussian. The angular mode number m is equal to one and m+1=0.

Fig. 4. Plot of the three functions H 80(), H82(4), and H 84(4) times a

Gaussian. The angular mode number m is equal to 7 and m+1=8.

Fig. 5. Light ray path in a parabolically graded index rod.

Fig. 6. Plot of the ratio of the percentage change of the group

velocity as a function of the sum of the mode numbers in a fiber

with a 100 im core diameter. Here X0 = 334.1902 nm's.,

V(N=0,m=0)=1.926684 x10 8 m/sec., and n = 1.556.
0

TABLE CAPTIONS:
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Table 1. Comparison of experimentally measured and theoretically

calculated quarter pitch length (z /2) in graded index rods.

Table 2. Typical specifications of a Single Graded Index Fiber Image

transmission System.

Table 3. The distance from the input face of the large diameter

section of a conical graded input section to points where the image

would be in focus again if it is in focus at the input face.


